DYE SENSITIZED SOLAR CELL BASED ON HYDROTHERMALLY SYNTHESIZED TIO₂ NANOTUBES ## A PROJECT REPORT PRESENTED BY JEGANATHAN AKILAVASAN to the Board of Study in Chemical Sciences of the **POSTGRADUATE INSTITUTE OF SCIENCE** in partial fulfilment of the requirements for the award of the degree of MASTER OF SCIENCE IN NANOSCIENCE AND NANOTECHNOLOGY of the UNIVERSITY OF PERADENIYA SRI LANKA 2010 ## DYE SENSITIZED SOLAR CELL BASED ON HYDROTHERMALLY SYNTHESIZED TiO₂ NANOTUBES J Akilavasan Institute of Fundamental Studies Hantana Road Kandy Sri Lanka ## ABSTRACT Dye Sensitized Solar Cells (DSSCs) are promising alternative devices for conventional Silicon based photovoltaic devices. Electron transport in DSSC could be enhanced by fabricating TiO₂ nanotubes instead of TiO₂ nanoparticles. In this investigation, titania nanotubes were synthesized via hydrothermal treatment of commercially available TiO₂ powder and they were fabricated into DSSC. In DSSC, random nature of the TiO₂ nanocrystalline particle network results in electrons to recombine as they travel through the surface of the TiO₂ nanocrystalline particle network reducing the cell performance. In order to reduce the charge recombination thereby improve the cell performance, TiO₂ nanotubes can be utilized instead of TiO₂ nanocrystaline particle as they provide effective straight path way to electron transport. TiO₂ nanotubes were synthesized via hydrothermal treatment of TiO₂ (P25 Degussa) nanoparticles. Formation of nearly 10 nm diameter and average length of 200 nm TiO₂ nanotubes was confirmed by Scanning Electron Microscopy analysis. TiO₂ nanotubes based working electrode was prepared on a conducting substrate (FTO/F: SnO₂) by electrophoretic deposition method. Electrolyte for electrophortic deposition was prepared based on two methods namely Precipitate Method and Powder Method. TiO₂ nanotube suspension prepared by ultra sonicating the precipitate is called *Precipitate Method* and TiO₂ nanotube powder made by freeze drying the precipitate is called *Powder Method*. The electrophoretic deposition method was employed to deposit TiO₂ nanotubes onto the conducting surface using two electrode system. The electro deposition potential and time was optimized as ~40 V for 5 minutes and ~40 V for 4 minutes for Precipitate and Powder Methods respectively at room temperature. Finally, electrodes were treated with TiCl₄ to improve the performance. The DSSC performance was measured with Ru based sensitizer dye (N3), iodine/triiodine redox couple as electrolyte and Pt counter electrode under standard AM 1.5 G irradiation. TiCl₄ treated electrode which is prepared using Precipitate Method showed an Open circuit voltage (*Voc*) of 728 mV, Short circuit current density of (*Jsc*) 5.24 mA/cm² and the overall efficiency of 2.21 %. Keywords: Dye Sensitized Solar Cell, hydrothermal, nanotubes, nanocrystalline.