PHYSICAL AND ELECTROCHEMICAL PROPERTIES OF POLYANILINES

A THESIS PRESENTED BY

R. L. N. CHANDRAKANTHI

to the

POST GRADUATE INSTITUTE OF SCIENCE

In partial fulfillment of the requirement for the award of the degree of

DOCTOR OF PHILOSOPHY

of the
UNIVERSITY OF PERADENIYA
SRI LANKA

January 2000

-V-

PHYSICAL AND ELECTROCHEMICAL PROPERTIES OF POLYANILINES

R L N Chandrakanthi

Board of Study: Physics

Degree: Ph.D.

ABSTRACT

Polyaniline (PANI) has emerged as one of the most promising conductive polymer for

commercial development. The oxidation states of PANI can be varied from fully reduced

leucoemeradine base to the half oxidized emeraldine base and to the fully oxidized

pernigraniline base form. In this study emeraldine base form of polyaniline was used as the

starting material for the preparation of other oxidation and protonation forms. The fully

oxidized form of poyaniline, pernigraniline base (PNB) has been prepared as a pure and

stable powder. The protonated form of PNB has been obtained in highly acidic media by

controlling the processing conditions such as solvent, temperature, drying procedure, etc.

Conductivity measurements showed a metallic behaviour for the partially crystalline PNB

salt form.

The thermal characteristics of emeraldine base form of PANI were studied by viscosity

measurements, FTIR spectroscopy and thermogravimetric analysis. Thermal ageing of PANI

results in a decrease in conductivity.

The electrochemical behaviour of chemically and electrochemically synthesized

polyaniline films have been investigated in aqueous functionalized acid solutions. Cyclic

voltammograms of chemically and electrochemically synthesized PANI were found to be almost identical. PANI films obtained by these two processes were compared with respect to their conductivity and stability. The in-situ conductivity experiments enabled the determination of a finite window of conductivity for different functionalized acids.

Nanocomposite materials formed by cadmium sulfide (CdS) and copper sulfide (Cu₂S) with polyaniline were synthesized by chemical methods. CdS/PANI and Cu₂S/PANI nanocomposites were prepared by incorporating Li₂S, Cd(CF₃SO₃)₂ and Cu(CF₃SO₃)₂ in PANI. Particle sizes of CdS and Cu₂S can be varied using this method. These nanocrystal sizes were obtained by TEM and XRD. The nanocomposites show good stability and high absorption in the visible light spectrum. The use of nanocrystals allows great flexibility in controlling the performance of photovoltaic devices by changing the nanocrystal size, concentration, and the material of the nanocrystals.