Cost

TRANSPORT PROPERTIES OF POLYMER ELECTROLYTES BASED ON POLY(ETHYLENE OXIDE) COMPLEXED WITH MAGNESIUM SALTS

A PROJECT REPORT PRESENTED BY

L.H.KARALLIYADDE

to the Board of Study in Physics of the

POST GRADUATE INSTITUTE OF SCIENCE

in partial fulfillment of the requirement for the award of degree of

MASTER OF SCIENCE IN PHYSICS OF MATERIALS

of the

UNIVERSITY OF PERADENIYA SRI LANKA 2004

TRANSPORT PROPERTIES OF POLYMER ELECTROLYTES BASED ON POLY(ETHYLENE OXIDE) COMPLEXED WITH MAGNESIUM SALTS

L.H.Karalliyadde

Department of Physics
University of Peradeniya
Peradeniya

Sri Lanka

Thermal, conductivity, electrical conductivity and FTIR measurements have been performed on (PEO)₉Mg(ClO₄)₂ and (PEO)₉Mg(ClO₄)₂ + 10 wt.% Al₂O₃ (acidic) nano-porous polymer electrolyte systems. It is observed that the conductivity enhances substantially due to the presence of the 10 wt.% Al₂O₃ filler particles. The results reveal that the filler particles do not interact directly with poly(ethylene oxide) (PEO) chains indicating that the main chain dynamics governing the ionic transport has not significantly been affected due to the filler. The results are consistent with the idea that the conductivity enhancement is probably due to the creation of additional sites and favourable conduction pathways for ionic transport through Lewis acid-base type interactions between the filler surface groups and the ionic species. An additional contribution to conductivity enhancement may also come from the increased amorphocity of the electrolyte due to the 10 wt.% Al₂O₃ filler. This is reflected as an increase in the mobility rather than an increase in the number of charge carriers.

The cell, Mg/'(PEO)₉Mg(ClO₄)₂ + 10 wt.% Al₂O₃ / MnO₂ / Al gives a high steady voltage and may be optimized for better performance. It appears that, intercalation materials are more suitable to be used as the cathode material in the fabrication of this type of cells.