TWO NEW MOSQUITOLARVICIDAL COMPOUNDS FROM THREE HORTONIA SPECIES

R. RATNAYAKE, V. KARUNARATNE, B.M R. BANDARA AND V. KUMAR

Department of Chemistry, Faculty of Science, University of Peradeniya, Sri Lanka

Hortonia is a genus endemic to Sri Lanka belonging to the family Monimiaceae which is considered to have originated in Gondwanaland about 100-120 million years ago. Latest revision of the family Monimiaceae by Dassanayake (1996) consideres three species (H. floribunda and H. angustifolia and H. ovalifolia).

Although three species of *Hortonia* is found from sea level (*H. angustifolia*) to monatne (*H. floribunda* and *H. ovalifolia*) regions there no reports of either medicinal properties or biological activity of the plant species. The present study was carried out to isolate the mosquitolarvicidal compounds of the plants.

Air-dried and ground leaves and stem bark of all three species were successively and exhaustively extracted into dichloromethane. Extracts were fractionated by MPLC (eluent: step gradient from hexane to dichloromethane). With the aid of mosquitolarvicidal assay-guided fractionatrion against second instar larvae of *Aedes aegypti*, two (A & B) mosquitolarvicidal compounds were isolated.

The two compounds were characterised by spectroscopic evidence (IR, ¹H NMR, ¹³C NMR and HRMS). The structures were further confirmed by using correlation studies (COSY, HMQC & HMBC).

The structures of both the two compounds were elucidated to be γ -lactones. In both, C-4 was substituted by a methyl group. In compound A, C-2 had a C_{12} linear chain ending in an acetylenic moiety while in compound B, the same chain (at C-2) terminated in an double bond. A literature search revealed that both compounds were new. Compound A showed significant mosquitolarvicidal activity of 100% mortality at 1 ppm while B showed 70% mortality at 10 ppm.

We thank Dr. John MacLeod of the Australian National University for assistance in detailed ¹H NMR spectra and HRMS.