UTILIZATION OF CONDUCTING POLYMERS AS SENSITIZERS IN SOLID-STATE PHOTOCELLS

A PROJECT REPORT PRESENTED BY

THUSITHA PATHIRATHNE

to the Board of Study in Chemical Sciences of the

POSTGRADUATE INSTITUTE OF SCIENCE

in partial fulfillment of the requirement for the award of the degree of

MASTER OF SCIENCE IN ANALYTICAL CHEMISTRY

of the

UNIVERSITY OF PERADENIYA SRI LANKA 2006

UTILIZATION OF CONDUCTING POLYMERS AS SENSITIZERS IN SOLID-STATE PHOTOCELLS

W. M. T. C. Pathirathne

Postgraduate Institute of Science
University of Peradeniya
Peradeniya
Sri Lanka

Substituted thiophene sensitized, nanocrystalline TiO₂-based quasi solidstate solar cells were fabricated by using either poly (3-thiophene acetic acid) (P3TAA) or a copolymer with poly (3-thiophene acetic acid)-poly(hexylthiophene) (P3TAA-PHT) and their performances were examined. The photocells were able to generate reasonably high photocurrents in the presence of hole transporting material CuI for the first time in polymer sensitized sold-state photovoltaic devices. Dramatic enhancement in the cell performances were observed with the addition of an ionic liquid 1-ethyl-3-methylimidazolium bis(trifluromethylsulfonyl) amide (EMImTf₂N) and LiTf₂N to the CuI solution as additives for charge transport promotion. The cell sensitized with P3TAA generated a short circuit photocurrent of ~1.4 mAcm⁻² with an open-circuit voltage of ~330 mV and a total power conversion efficiency of ~0.25% under the irradiance of 1000 Wm⁻² (1.5 Air Mass). In the case of copolymer P3TAA-PHT delivered ~0.28% efficiency under the same conditions with ~1.45 mAcm⁻² as photocurrent and ~325 mV as photovoltage. The corresponding incident photon to current conversion efficiencies (IPCE) of the above cells were ~37 % and ~31 %, respectively.