SYR

NATURAL OSCILLATIONS IN APPROXIMATELY LINEAR SECOND ORDER DYANAMIC MODELS

A PROJECT REPORT PRESENTED BY

E.M.G.W.M.B. THALAGUNE

to the Board of Study in Mathematics of the **POSTGRADUATE INSTITUTE OF SCIENCE**

in partial fulfillment of the requirement for the award of the degree of

MASTER OF SCIENCE IN INDUSTRIAL MATHEMATICS of the

UNIVERSITY OF PERADENIYA SRI LANKA 2003

ABSTRACT

NATURAL OSCILLATIONS IN APPROXIMATELY LINEAR SECOND ORDER DYANAMIC MODELS

E.M.G.W.M.B. Thalagune

Department of Physical Science
Faculty of Applied Sciences
Rajarata University of Sri Lanka
Polgolla
Sri Lanka

Oscillations of second order non-linear dynamic models governed by $\frac{d^2x}{dt^2} + \omega^2 x = \varepsilon f\left(x, \frac{dx}{dt}\right)$ are considered, where $|\varepsilon|$ is a small parameter. The perturbation methods based on small damping are applied to obtain approximate solutions of certain non-linear systems characterized by particular forms of $f\left(x, \frac{dx}{dt}\right)$.

As an application in Industrial Mathematics a special study is done on price fluctuations of a dynamic market model where the excess supply Q_s - Q_d is a quadratic function of the price trend. It is proved that an isomorphism between the dynamic market model and a classical dynamical damper exists and the price function p(t) converges to its intertemporal equilibrium price p.