ELECTROCHEMICAL DETECTION OF SUPEROXIDE RADICAL ANION

H.M.A.M.C. HERATH, R.M.G. RAJAPAKSE, A. WICKRAMASINGHE AND V. KARUNARATNE

Department of Chemistry, Faculty of Science, University of Peradeniya

Superoxide radical anion (O_2^{-}) is a short-lived, extremely reactive species formed upon one-electron reduction of ground state triplet oxygen. O_2^{-} , in the aqueous medium abstracts a proton to produce HO₂ which disproportionates to give H₂O₂ and hydroxyl radicals (OH). All these species are good oxidants that can attack organic pollutants in the aquatic systems. The formation and the role of O₂⁻ in the biological systems are also of great concern in terms of the cytotoxicity of O₂⁻ towards many cellular constituents. O₂⁻ also involves in the defense against viral and bacterial attacks. Therefore, a development of a quantitative method to determine O₂⁻ in solution is very important.

In this respect we have tested several quinone type compounds as mediators for the design and development of an electrochemical method for the detection of O_2 -. Listed below are some of the materials we have investigated in acetonitrile.

Compound	Formal electrode potential/V
Anthrone	- 0.84
1,4-benzoquinone	- 0.45
Anthraquinone-2-sulfonic acid	- 0.87
1,2,3-triketohydrindene hydrate	- 0.49
3,4-dihydroxy-9, 10-dioxo-2-anthraquinone-2-sulfonic acid	- 0.75
Phenanthroquinone	- 0.64

As can be seen from the above table, 1,2,3-triketohydrindene hydrate is a promising O_2 - quencher similar to that of 1,4-benzoquinone. Detailed mechanistic studies reveal that the compound reacts immediately with O_2 -, once formed, and therefore, acts as a mediator for the detection of O_2 -.

Acknowledgement

2

This work is supported by the grant RG/99/C/01 from National Science Foundation.

Proceedings of the Annual Research Sessions, University of Peradeniya, Sri Lanka. Volume 6, November 16,2001