
Proceedings of the Peradeniya University Research Sessions, Sri Lanka, Vol.12, Pari 1I, 3dhNovember 2007

Implementation of an Electronic Tuner in J2ME using Fast Fourier Transform

I. Herath and R.G. Rage)'

Department of Computer Engineering, Faculty of Engineering, University of Peradeniya

Introduction

An electronic tuner is a device used by
musicians to tune instruments. There, a
musician plays a note and the display of the
tuner tells the musician how much the played
note has deviated from the desired note in
terms of frequency. Most of these devices, such
as KORG Chromatic Tuner CA-30, are
standalone equipments which are solely used to
tune musical instruments. It would be
advantageous if this functionality could be
integrated into existing electronic appliances
like mobile phones as these devices are
equipped with an the necessary hardware
components to be used as an electronic tuner.
In addition, mobile software applications are
becoming increasingly popular and authors of
this paper uses this opportunity to ~evelop. a
tuner a\l\l\;'cat\on to be dC\l\oyea In mobl\\:
phones.

Section two of this paper focuses on related
researches on this area and section three
describes the methodology used during the
development process. Section four shows the
results obtained and section five discusses the
issues related to development. Finally, section
six concludes the paper.

Related work
In the first part of this section we will brief two
academic researches and in the latter part we
will focus on few similar industrial
applications. Zaykovskiy and Schmitt (2007)
presented front end implementation ?f speech
recognition systems for moblil;: de~lces. ",:he
signal analysis of these systems IS being carried
out at the server side where the mobile client
does not interfere with signal processing. The
shortcoming of this sort of application is .the
communication overhead between the chent
and the server. The Java signal analysis
application by Clausen et al. (1998) can only
be deployed on desktop comput~rs an~ any
other similar or advanced electronic appliances
due to the functions used in this particular
program.

There are quite a number of mobile
applications such as, Guitar Tuner (Kohn,
1997-2007), Tiny Tuner (GetJar.com, 2004-
2007), and Chromatic Guitar Tuner
(4pockets.com) are available. The Guitar Tuner
and Tiny Tuner are simple applications which
are only capable of playing a note so that
musicians can hear the note and adjust their
instruments. However Chromatic Guitar Tuner
is a sophisticated application which is capable
of analyzing the frequencies and estimating the
closest notes. The limitation of this application
is that it can only be deployed on high end
mobile devices such as Pocket pes.

Therefore the aim of this project is to develop a
mobile application which could be deployed in
most of mobile phones. It was a challenging
task to implement frequency ana\)',;;'" in \<>w

end mobile devices such as Java enabled
mobile phones due to their limited
functionality. The authors of this pape: have
succeeded in this by finding a mechanism to
implement Fast Fourier Transform (FFT) in
Java 2 Micro Edition (J2ME).

Development and implementation
The major part of the product is the frequency
calculation. The FFT has to be apphed to
obtain the frequency of the sound wave from
which the notes are identified. In order to
perform FFT the sound wave needed to be
sampled. But the chosen platform, J2ME, does
not accompany an Application Programming
Interface (API) to deal with sampling the
sound. Even though this limitation exists,
J2ME was chosen as the development platform
due to the higher number of mobile phone
models supported by this platform. Then the
authors used the only available option, which is
to sample the sound wa,,:e within the
application. The sound wave IS sampled and
stored as a wave file, which comprises of
header (chunk descriptor), "fmt" sub chunk and
"data" sub chunk as shown in Figure 1. As
depicted in Figure 1, the "fmt" ~hu~ has ei~ht
fields which are represented 10 httle endian
format except the field chunk ID. The fields
which are important from this chunk for the

227



Proceedings of lhe Peradeniya University Research Sessions, Sri Lanka, Vol. 12, Pari II, 3dh November 2007

FFT are SampleRate and BitsPerSample. The
value represented in BitsPerSample field is
being used in deciding the number of bytes to
read from data chunk per reading. The value in
the sample rate field is being used in
calculating the frequency. When the

frequencies are known, it is mapped into the
closest notes and displayed to the user. The
first phase of our application samples the sound
wave by recoding it as an audio clip in wave
file format as shown in Figure 1.

.ndlan File 01lsl' neld name Flold Sizo
(bytes) (bytes)

0 The "RIFF" chunk descriptorbig .4

}4
little 4 The Format of concern here Is
big 4 'WAVE', Whlch1"equires two

1.2 sub-ctionks: 'fml" and 'data'
big 4

16
111I. 4

20
little

22 The "fmt" sub-chunk
IlIIe

24 describes the format oflillie 4
28 the sound Information In

little 4 the data sub-chunk
32 , <"<lillie
34

1Itt1e
3S

l
big 4

40 The - data- sub-chunk
rrtlle 4

44 tndlcates the' size of thee
.~

sound Information and111I0 i contains the raw sound
Z dala11~
en

Figure I, The WAVE File Format (taken from (Wilson, 2003))

Subroutinel: Input data[)
For (i=O to 256)

For (j=O to 256)
X = (-2 * n * i * j ) I 256
cosPart [i) = cosPart [i) + data [j) * Cos (X)
sinPart [i) = sinPart [i) + data [j) * Sin (X)

End For
totalCos [i)
totalSin [i)

End For
End Subroutinel

totalCos [i) + cosPart [i)
totalSin [i) + sinPart [i)

Main:
While there is data in data chunk

Call Subroutinel with 256 samples
End while

For (i = 0 to 256)
FindMax (ItotalCos[i) + totalCos[i) I)
location = i

End
Frequency = SarnpleRate * location I (2*255)

End Main

Figure 2. Algorithm for Obtaining the Frequency

228



Proceedings of the Peradeniya University Research Sessions, Sri Lanka, Vol.l Z, Part ll, 3d"November 1007

The second phase of our application analyses
the audio clip in wave file format from where
the information is extracted. The values
SampleRate and BitsPerSample are read from
"fmt" chunk and are stored as application
variables. As in Figure I, the data chunk
comprises of a chunk ID (Subchunk2/D), chunk
size (Subchunk2Size) and data. The value
chunk size is being used to determine the size
of,the data to be read. Then 256 samples are
being read to an array called data which is then
being processed by Subroutine 1 in the
algorithm shown in Figure 2. This process is
being carried out until there are no samples to
be read. Then as shown in Figure 2, amplitude
of the total cos and sin values are being
calculated by the FindMax method and the
location of the highest amplitude, i.e. between
1~d 255, is determined. Then the frequency is
being calculated as shown in the algorithm.

Results
The playToneOfunction (an inbuilt function of
the API) in the Manager class is being used to
play the notes A, B, C, D, E, F, G and sound is
captured via the microphone. The captured data
are then being sent to our application to get the
frequency of the played notes. Following
results were obtained.

Table 1. Frequenciesobtained for notes played
withMobileMediaAPI

Note ABC D E F G
Frequency 2 2 2 2 3 3 3

(Hz) 2 3 6 9 2 6 9
o 5 6 8 9 0 2

Discussion
Our application uses cos and sin functions from
the Math library. Therefore this application can
only be deployed on mobile phones with
Connected Limited Device Configuration
(CLDC) 1.1 (SunMicrosystems, 2006), where
the cos and sin functions are implemented in
the Math library. This limits the usability of
our application as these functions are not
implemented in the Math library of CLDC 1.0
(Sun~icf(?systems, CLDC Library API
Specification 1.0, 2006). Therefore it is
necessary to take appropriate measurements to
make our application run on CLDC 1.0. The
FFT pro<7ssing .time ~scomparably high due to
the floating POint arithmetic used during the
process. This reduces the performance of the
application. Further research and development
is required to overcome these issues.

Conclusions
This paper presents the mechanism behind the
implementation of FFT in J2ME for an
electronic tuner application and to the best of
our knowledge this is the first time such an
effort has succeeded (SunMicrosystems
develop a Musical Tuner, 1994 - 2006). '

References
4pockets.com. (n.d.). 4pockets.com. Retrieved

07 30, 2007, from PocketPC Applications:
Chromatic Guitar Tuner:
http://www Apockets.comJproduct info.php
?p=39 -

Clausen, A., Spanias, A., Xavier, A. and
Tampi, M. (I998) A Java signal analysis
tool for signal processing experiments
Proceedings of the 1998 IEEE
International Conference on Acoustics.
Speech and Signal Processing. Seattle,
1998. 1849-1852.

GetJar.com. (2004-2007) Tiny Tuner .I free
download. Retrieved 07 30, 2007 from
Free Java, Symbian, Palm and Pocket PC
Software:
http://www.getjar.comJproducts/5314/Tiny
Tuner

Kohn, M. (1997-2007) Guitar Tuner. Retrieved
07 30, 2007, from Michael Kohn:
http://www.mikekohn.neIlj2me/guitartuner.
php

SunMicrosystems (2006) CLDC Library API
Specification J.O. Retrieved 07 30, 2007,
from . Java Technology:
http://java.sun.com/javame/referencelapis/js
r030/

SunMicrosystems (1994 - 2006) Develop a
Musical Tuner. Retrieved 07 30, 2007,
from Developer Forums Java Technology
Forums:http://forum.java.sun.comJthread.js
pa?forumlD=76&threadlD=613127

SunMicrosystems. (2006) Overview (CLDC
1.J). Retrieved 07 30, 2007, from Java
Technology:
http://java.sun.comljavamefreferencefapisfjs
r139/

Wilson, S. (2003, 0120) WAVE PCM soundfile
format. Retrieved 07 30, 2007, from Center
for Computer Research in Music and
Acoustics:http://ccrma.stanford.eduJcourses
/422/projectsIWaveFormat.

Zaykovskiy, D., and Schmitt, A. (2007) Java
(J2ME~ .Front-End for distributed speech
recognition, 21st International Conference
on Advanced Information, Washington
2007. 353-357.

229


