Proceedings of the Peradeniya University Research Sessions, Sri Lanka, Vol.12, Part II, 30" November 2007

Full Instruction Encoding for Heterogeneous Multi Pipeline Application Specific
Instruction-Set Processors

S. Radhakrishnan’ and R.G. Ragel

Department of Computer Engineering, Faculty of Engineering, University of Peradeniya

Introduction

Embedded systems are becoming ubiquitous,
cheaper, powerful, and increasingly ever
present in people's life. Since embedded
systems usually execute a single application or
a class of applications, customization can be
applied to optimize for performance, cost,
power etc. One popular design platform for
embedded systems is the Application Specific
Instruction-set Processor (ASIP), which allows
such customizability without overly hindering
design flexibility. Numerous tools and design
systems such as AS/P-meister (PEAS Team,
2002) and Xtensa have been developed for
rapid ASIP generation.

Usually ASIPs contain a single execution
pipeline. Recently however, there has been
trend towards having multiple pipelines. For
the first time, in (Radhakrishnan et al., 2005), a
design framework was proposed for ASIPs
with varying number of pipelines. Given an
application specified in C, the design system
generates a processor with a number of
heterogeneous pipelines specifically suitable to
that application. Each pipeline is customized,
with a differing instruction set and the
instructions are executed in parallel in all
pipelines.

In the framework described in (Radhakrishnan
et al., 2005), the instruction widths for each
pipeline are identical. Later, this work was
extended with the aim of reducing processor
and code size for such a design by
systematically customizing the instruction
encoding with differing instruction width for
each pipeline, without affecting the
performance of the processor. The instruction
set for each pipeline is different. Therefore,
instead of using identical instruction widths for
instruction encoding, each pipeline can have its
own encoding scheme with differing
instruction width; thus, high density code can
be achieved, saving instruction memory.

As an initial attempt to the extension, in
(Radhakrishnan et al., 2006) the authors have
implemented the customization of instruction
encoding and forwarding path for a single

230

pipeline (which was the third pipeline in a three
pipeline design) and have analyzed the benefits
of such an approach. The decision to customize
the encoding of only the third pipeline was
made based on: (1) the observation that it had a
smaller subset of instructions compared to the
first and the second pipelines and this subset
does not require the same instruction width as
the first two pipelines do; (2) a limitation on
the width of the processors (instruction width
could only be a multiplication of eight bits)
which could be developed in the tool (4SIP-
meister) that was used to generate each

pipeline.

In this paper the authors have extended the
customization of encoding for all three
pipelines. This is achieved by customizing
ASIP-meister to generate processors with any
instruction width. The authors were able to
prove that the customization of all pipelines
even with a considerably larger subset of the
instructions could yield a saving in overheads.
Even though the saving of the number of bits in
each pipeline may not be very significant in
some of the cases, there is a reduction in area,
leakage power and clock cycle of every design
considered. This is the first known attempt to
perform this reduction in the area of
heterogeneous multi-pipeline system through
customizing the encoding of all the pipelines.

Design overview

The design flow of our target multi-pipeline
ASIP framework is as follows: it starts with an
application written in C, which is compiled into
a single-pipeline assembly code. The single
pipeline code is then scheduled into a number
of parallel pipelines, from which the instruction
set for each individual pipeline is deduced.
Next, ASIP-meister, a single-pipeline ASIP
design tool, is used to design each single
pipeline. All these pipelines are then integrated
into a multi-pipeline processor containing a
multi-issue structure where the register file is
shared by all pipelines. Each pipeline performs
its own program sequence and has a separate
control unit that controls the operation of the
related functional units on that pipeline. This
design process is repeated with different

"~ Proceedings of the Peradeniya University Research Sessions, Sri Lanka, Vol. 12, Part II, 30"November 2007

number of pipelines until a design that meets
the given design criteria is obtained.

Instruction encoding

Instruction encoding is the act of using binary
bits with certain format to represent
instructions. The format of the instructions can
be generally divided into two parts: one,
operation field or the operation code (op-code),
for encoding operation; and the other, multiple
operand fields for encoding operands. Our
encoding approach uses a fixed instruction
width for each individual pipeline, with the
width varying from one pipe to another. The
encoding starts with the existing instruction
sequence produced by the scheduling
algorithm. Encoding for each pipe is carried
out separately. The instructions in a sequence
are grouped based on the type of the
instructions. The pattern of operand values is
analyzed and operands are encoded with
minimal possible number of bits. Based on the
operand encoding, the operations of the whole
instruction set used by the application program
is then encoded. Details for both encoding
tasks are given below.

Operand encoding

In the instruction set architecture (ISA) used in
our design, the operands can generaily be
classified into two types: registers and
immediate values. The encoding strategy is
demonstrated in the following with register
operands (or registers for simplicity).
Conventionally, the size of a register field (or
operand field), is determined by the size of the
register file. However, with a given program
sequence, a certain type of instructions may not
use all of those registers. Therefore, the field
size can be reduced. Rather than randomly
assigning code-words to each of the registers,
we used an encoding approach such that the
decoding will be simpler, thus reducing
hardware complexity, and hence improving
performance, arca and power. We call this
technique reduced-bit efficient encoding or
REE. Table 1 compares a typical full bit
encoding (FBE) against REE for a given set of
register usage.

Table 1. FBE Vs. REE

Registers R2 R4 R13 R11
FBE (bsbsbibo) 0010 0100 1101 1011
REE (cico) 10 00 01 11

Row 3 in Table 1 gives an example of such an
encoding. Given a register array for a register
operand field, we determine the encoding
values by using REE algorithm. The full REE
algorithm is omitted from this presentation for
brevity. Applying this algorithm to each of the
operand fields, we can obtain encoding for all
operand fields in an instruction type with a
minimal number of bits.

Operation encoding

We group the instructions according to the
number of bits needed for the operand fields.
When the instruction type is unique no bits are
used for operand fields. The operation field
encoding is summarized in Algorithm 1. For
each instruction type, the instruction operation
encoding progresses from inner most level to
the outmost level; and the code size grows
accordingly.

group instnsctions according to their total size of operand fields:
encodingDone = FALSE:
while encodingDone = FALSE do
cusrent.group = instructions with smallest partial encoding size;
encode the current group with smallest numnber of bits
bitdifference = operand fiekd size of next group - partial encoded
size of current group
if bit_ditference # 0 then
pad_groups. with. bitdifference zeros)as necessary (o wmatch
the partial code sizes:
encode curreat_group with minimal number of bits;
end if
if all instruction types have been fully encoded then
encodingDone = TRUE;
end if
end while

Algorithm 1. Operation Encoding

Results and discussion

We designed ASIPs for two applications from
Mibench embedded systems benchmark suite.
The designs were later synthesized using
Synopsys Design Compiler based on the
Taiwan Semiconductor Manufacturing
Company’s (TSMC) 90nm core library, and
simulated with the Modelsim simulator. Figure
1 depicts the area, clock cycle and leakage
power comparisons of the non-customized
(typically encoded) and customized (fully
encoded) designs. The average savings are
26.9% on area, 27.8% on leakage power and at
the same time there is a reduction in clock
cycle by 1.4%. In addition, the average
instruction memory size saving is about 69%.

For instruction encoding, many approaches

have been proposed. In (Lee et al., 2002),
authors presented a technique that encodes all

231

Proceedings of the Peradeniya University Research Sessions, Sri Lanka, Vol.12, Part I1, 3 0" November 2007

instructions, required by an ASIP, with a given
instruction size. A hierarchical instruction
encoding for VLIW-based architecture
application is presented in (Liu, 2005). These
approaches are not tailored to our target
processors proposed in (Radhakrishnan et al.,
2005). The techniques presented in this paper
exploit the unique architectural feature of our
target heterogeneous multi-pipeline ASIP.

Conclusions

We presented techniques to fully customize
instruction encoding for a multiple pipe
processor. This approach best trades off the
simplicity of fixed size encoding approaches
and high density of varied size encoding
techniques. The encoding is customized, with
each pipeline having its own fixed instruction
width and the instruction width varying from
one pipe to another, and hence achieving a
better trade-off between the design simplicity
of the fixed-width encoding and code reduction
efficiency of the varied-width encoding. Due to
the resource and time limitation only few
applications were implemented for the current
work. Many versatile applications will be

implemented in the future work for

customization of processor.

References

Lee, J.S., Choi, K. and Dutt, N. (2002)
Efficient instruction encoding for automatic
instruction-set design of configurable
ASIPs, ICCAD, 649-654.

Liu, C.H. (2005) Hierarchical instruction
encoding for VLIW digital signal
processors, ISCAS, 3053-3056.

PEAS Team. (2002) ASIP Meister Toolset.
Retrieved 4 2007, from ASIP Meister:
http://visilab.ics.es.osaka-u.ac.jp/dac2003/.

Radhakrishnan, S., Hui, G. and Parameswaran,
S. (2005) n-pipe: Application specific
heterogeneous multi-pipeline processor
design, Workshop for Application Specific
Processors.

Radhakrishnan, S., Hui, G., Parameswaran, S.
and Aleksandar, 1. (2006) Application
specific forwarding network and instruction
encoding for multipipe ASIPs,
CODES ISSS: 06, Proceedings of the
Sfourth International Conference on
CODES.

i 100008 4-
! so000
i

o ;«.Q,

fitcount
Tnoncus Bous

(2) Arwa (Bcally) e .y,w,g R i

a\dpcm
i nomcus Wous

CWCM lm) M_;; Frmemme

Bitcaunt Adpem Bdcount

Fnoncus Mous

{e) Pownr MW! L <

Figure 1. Savings due to full customization of encoding

232

