A PROFILER FOR TESTING JAVA PROGRAMMES

(Socket Server and the Analyser)

A PROJECT REPORT PRESENTED BY

NISHANTHA SRIPAL! WEERAKOON
o

to the Board of Study in Statistics and Computer Science of the
POSTGRADUATE INSTITUTE OF SCIENCE

in partial fulfilment of the requirement

for the award of the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE
of the

UNIVERSITY OF PERADENIYA
SRI LANKA
2003

5714495




ABSTRACT

Java programming language was first designed to be used as a controlling language for
consumer electronic devices but later this was redesigned to be used as a platform
independent programming language. which uses an interpreter that can be embedded in
other applications. With this redesign, Java became very popular among, especially, web
based application programmers. Java programmes began to grow larger and larger. In the
meantime, most of larger Java programmes were not satisfactory in performance and

tools were required to analyse and measure the performance of larger Java programmes.

Many tools were built for testing Java programmes and most of these tools used profiling
as their approach. Almost all of the early Java profilers used an instrumented Java VM to
obtain the necessary information. There were many drawbacks of those profiling tools so
that the Sun Microsystems Inc. introduced a general-purpose profiling instrumentation,
JVMPI, with their standard Java release. At the moment this is used as a standard for the
development of profiling tools. The most interested areas of profiling are the memory
usage, CPU usage and monitor contention. In this project a general-purpose memory
profiler, which is useful in analysing memory leakage problems in a single Java VM is
designed.

In this profiling process, JVMPI is programmed to provide information on class loading,
object allocation, object release and object movement events. These data are then sent to
the profiler front-end and stored there. Since memory problems can be identified by
visualising the obtained information graphically, all information regarding the classes and
objects are presented to the user through a graphical user interface. The system uses
advanced Java features such as JVMPI to obtain the information from the Java VM, JNI to
incorporate native codes written to receive information from the profiler agent and Swing
to build a decent graphical user interface.

A makefile is provided to automate the compilation and installation of all the source files
using Unix make utility.




