C302 ELECTRICAL CONDUCTIVITY AND PHASE DIAGRAM STUDIES OF SOME SOLID ELECTROLYTES BASED ON $\mathrm{Li_2SO_4}$ AND $\mathrm{Na_2SO_4}$ THESIS SUBMITTED BY P.W.S.K. BANDARANAYAKE FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN THE DEPARTMENT OF PHYSICS, UNIVERSITY OF PERADENIYA, PERADENIYA, SRI LANKA. 490773 ## ELECTRICAL CONDUCTIVITY AND PHASE DIAGRAM STUDIES OF SOME SOLID ELECTROLYTES BASED ON Li₂SO₄ AND Na₂SO₄ by ## P.W.S.K. Bandaranayake PERMANENT REFERENCE FOR USE IN THE LIBRARY ONLY ## ABSTRACT Electrical conductivity of the Li_2SO_4 - CaSO_4 , Li_2SO_4 - CaSO_4 eutectic + Al_2O_3 , Li_2SO_4 - Li_2WO_4 , Na_2SO_4 - CaSO_4 , Na_2SO_4 - MgSO_4 , Na_2SO_4 - Na_2SO_4 - Na_2SO_4 and the Na_2SO_4 - Li_2SO_4 - CaSO_4 systems have been measured using ac impedance technique. Phase diagrams of the Na_2SO_4 -CaSO $_4$ and the Na_2SO_4 -MgSO $_4$ systems have been determined in detail using the differential scanning calorimetry and the high temperature powder X-ray diffraction. In the $\mathrm{Li_2SO_4}$ -CaSO_4 system, the eutectic composition which is at 17.5 mol% $\mathrm{CaSO_4}$ shows the maximum conductivity, e.g. $2.1\mathrm{x}10^{-3}$ $\Omega^{-1}\mathrm{cm}^{-1}$ at $500^{\circ}\mathrm{C}$. When $\mathrm{Al_2O_3}$ was added to the eutectic mixture of $\mathrm{Li_2SO_4}$ -CaSO_4, a further enhancement of conductivity could be seen and the maximum was observed for 40 mol% $\mathrm{Al_2O_3}$. The conductivity enhancement of the eutectic mixture is attributed to the composite effect due to the maximum grain boundary area in the eutectic mixture and the additional conductivity enhancement is attributed to the increased interfacial area due to the presence of $\mathrm{Al_2O_3}$ grains. In the $\mathrm{Li_2SO_4}$ - $\mathrm{Li_2WO_4}$ system, two conductivity maxima have been observed below 500°C. They were at about 34 and 70 mol% $\mathrm{Li_2WO_4}$. The first maximum is due to the composite effect, and the second one is due to the partial replacement of $\mathrm{WO_4^{2-}}$ with $\mathrm{SO_4^{2-}}$ creating more interstitial sites. The high ionic conductivity of $\alpha\text{-Li_2SO_4}$ has been explained by the paddle-wheel mechanism in which the cationic mobility is enhanced by the coupled rotation of translationaly static SO_4^{2-} ions. Replacement of SO_4^{-2} by larger WO_4^{2-} ions has shown a conductivity drop within the solid solubility region of α -phase. This is a strong experimental evidance for the proposed paddel-wheel mechanism of ion transport in α -Li₂SO₄. In the ${\rm Na_2SO_4}$ -CaSO_4 system, two intermediate compounds have been observed at 7.7 and 33 mol% CaSO_4. The solid solubility of the ${\rm Na_2SO_4}(I)$ phase extends up to 40 mol% CaSO_4 at 915°C. The electrical conductivity of this solid solution increases rapidly with increasing CaSO_4 content and reaches a maximum at about 5 mol% CaSO_4 and the maximum conductivity at 300° C is $3.5 \times 10^{-3} \ \Omega^{-1} {\rm cm}^{-1}$. In the ${\rm Na_2SO_4}$ -MgSO_4 system, ${\rm Na_2Mg(SO_4)_2}$ and ${\rm Na_2Mg_3(SO_4)_4}$ have been identified as intermediate compounds. The solid solution of the ${\rm Na_2SO_4}(I)$ phase is stable up to 35 mol% MgSO_4 at 680° C. The electrical conductivity of this solid solution increases rapidly with increasing MgSO_4 content and reaches the maximum at 20 mol% MgSO_4. The maximum conductivity is about $2 \times 10^{-2} \ \Omega^{-1} {\rm cm}^{-1}$ at 520° C. In both these systems, the conductivity maxima can be explained by the formation of clusters and defect interactions at high vacancy concentration. In the $\mathrm{Na_2SO_4}$ - $\mathrm{Na_2SeO_4}$ system, the conductivity up to 30 mol% $\mathrm{Na_2SeO_4}$ has been studied and the conductivity enhancement observed is very small compared to the enhancement due to the cation substitution in $\mathrm{Na_2SO_4}$. The conductivity enhancement can be attributed to the lattice expansion due to the replacement of smaller $\mathrm{SO_4^{2-}}$ by larger $\mathrm{SeO_4^{2-}}$ in the solid solubility region. In the $\mathrm{Na_2SO_4-Li_2SO_4-CaSO_4}$ ternary system, the highest conductivity is observed for the composition $\mathrm{Na_{1.6}^{Li}0.2^{Ca}0.1^{SO_4}}$ which has the $\mathrm{Na_2SO_4}$ (I) structure, and the conductivity of this composition is 1.0×10^{-2} $\Omega^{-1} \, \mathrm{cm}^{-1}$ at $350^{\circ} \mathrm{C}$. The conductivity enhancement observed in this system is possibly caused by the creation of more vacancies due to Ca^{2+} substitution combined with high Li^{+} ion mobility. PERMANENT REFERENCE FOR USE IN THE LIBRARY ONLY