
Book of Abstracts of the Peradeniya University Research Sessions, Sri Lanka - 2012 Vol. 17 4th July, 2013

79

E.ENG.27

GRAPHICS PROCESSING UNITS: TO USE OR NOT TO USE?

D. R. V. L. B. Thambawita, N. C. Ellepola, R. G. Ragel, D. Elkaduwe

Department of Computer Engineering,
Faculty of Engineering, University of Peradeniya

String matching is a very important aspect in various databases and text processing
applications. Bioinformatics, signature based anti-virus software and many other important
applications highly depend on the efficiency of string matching tools. With the advent of
parallel computing, traditional sequential string matching drawbacks were phased out
improving the application’s performance. Over the past few years, the use of Graphic
Processing Units (GPUs) to achieve parallelism has shown promising results, in which the
GPUs exhibit SPMD (Single Program Multiple Data) programming model. NVIDIA has
introduced CUDA (Compute Unified Device Architecture) programming API enabling
programmers to use threaded processors of a GPU to achieve higher data parallelism.

In our research, we consider a basic string matching algorithm as a benchmark for
comparing CPU and low end GPU performance for single string matching. Here, we consider
changing memory types (global memory, constant memory, shared memory), data file size and
the number of threads in both CPU and GPU and analyse them in order to compare their
performance trade-offs. We utilize the maximum work load on both GPU and CPU when
comparing the string by repeating the same pattern in the data file.

In our approach, we observe the performance while altering the data file size, and
experiments indicate that, when we only consider the kernel execution time, with the
increment of the data file size, the rate of increment of the time taken to match the strings
decreased in GPU in contrast to the CPU. However, in most GPU kernels data must be moved
on to the device prior to being used by the kernel, which introduces an additional time for the
computation. In our experiment, this causes performance deterioration with the increment of
the data load to the device due to context initialization time.

In this context, when the GPU load is low, low end GPUs show ill performance in
basic string matching operations compared to that of the CPU due to the process initialization
of the GPU. The performance of the GPU is gradually increased with the input data file size.
As the next phase of the project, we are planning to conduct the experiment using different
data types and different GPUs with higher bandwidth capabilities to minimize the effect of
data transfer overhead.

