ON A GEOMETRIC PROPERTY OF FINITE BLASCHKE PRODUCTS

P.A.V.I. KUMARI AND A.A.S. PERERA*

Department of Mathematics, Faculty of Science, University of Peradeniya, Peradeniya.

Let B be a finite Blaschke product of degree 3 with distinct zeros at $0, a$ and b, and let $|\lambda|=1$. Also, let x_{1}, x_{2} and x_{3} be the distinct solutions of $B(z)=\lambda$. In a recent paper in the American Mathematical Monthly, Daepp, Gorkin and Mortini proved that the sides of the triangle $x_{1} x_{2} x_{3}$ are tangent to the ellipse $|w-a|+|w-b|=|1-a \bar{b}|$, and presented an algebraic generalization of it using the following result as the main tool of the proof:

Let λ be a complex number with $|\lambda|=1$, and let B be a finite Blaschke product of degree n with n distinct zeros and with $B(0)=0$. If x_{r} is any point such that $B\left(x_{r}\right)=\lambda$, then there exists m_{r} with $0<m_{r}<1$ and a finite Blaschke product C of degree $n-1$ with $C(0)=0$ such that

$$
\begin{equation*}
\frac{B(z) / z}{B(z)-\lambda}=\frac{m_{r}}{z-x_{r}}+\left(1-m_{r}\right) \frac{C(z) / z}{C(z)-\lambda} \tag{1}
\end{equation*}
$$

In this study, we first show that the equation (1) follows easily from a known theorem, and give another proof of it using the Herglotz representation formula. Next, we apply this result to give a new proof of the following theorem established in the above paper:

If B is a finite Blaschke product of degree 2 with distinct zeros and with $B(0)=0$, then for any λ with $|\lambda|=1$, the line joining the distinct points x_{1} and x_{2} satisfying $B\left(x_{1}\right)=B\left(x_{2}\right)=\lambda$ passes through the non-zero zero of B.

Also, we extend the geometric properties established in Daepp et. al. paper by removing the conditions imposed on the zeros of the finite Blaschke product.

