ON A GEOMETRIC PROPERTY OF FINITE BLASCHKE PRODUCTS

P.A.V.I. KUMARI AND A.A.S. PERERA*

Department of Mathematics, Faculty of Science, University of Peradeniya, Peradeniya.

Let *B* be a finite Blaschke product of degree 3 with distinct zeros at 0, *a* and *b*, and let $|\lambda|=1$. Also, let x_1 , x_2 and x_3 be the distinct solutions of $B(z) = \lambda$. In a recent paper in the American Mathematical Monthly, Daepp, Gorkin and Mortini proved that the sides of the triangle $x_1 x_2 x_3$ are tangent to the ellipse $|w-a|+|w-b| = |1-a\overline{b}|$, and presented an algebraic generalization of it using the following result as the main tool of the proof:

Let λ be a complex number with $|\lambda| = 1$, and let B be a finite Blaschke product of degree n with n distinct zeros and with B(0) = 0. If x_r is any point such that $B(x_r) = \lambda$, then there exists m_r with $0 < m_r < 1$ and a finite Blaschke product C of degree n-1 with C(0) = 0 such that

$$\frac{B(z)/z}{B(z)-\lambda} = \frac{m_r}{z-x_r} + (1-m_r)\frac{C(z)/z}{C(z)-\lambda}.$$
 (1)

In this study, we first show that the equation (1) follows easily from a known theorem, and give another proof of it using the Herglotz representation formula. Next, we apply this result to give a new proof of the following theorem established in the above paper:

If B is a finite Blaschke product of degree 2 with distinct zeros and with B(0) = 0, then for any λ with $|\lambda| = 1$, the line joining the distinct points x_1 and x_2 satisfying $B(x_1) = B(x_2) = \lambda$ passes through the non-zero zero of B.

Also, we extend the geometric properties established in Daepp *et. al.* paper by removing the conditions imposed on the zeros of the finite Blaschke product.