PERFORMANCE OF THE H₂/Pt/Ce_{0.9} Gd_{0.1} O_{1.95}/Pt/O₂ INTERMEDIATE TEMPERATURE (500 - 700 °C) FUEL CELL

R.S.P. BOKALAWELA¹, M.A.K.L. DISSANAYAKE^{1*}, B. -E. MELLANDER², I. ALBINSON²

¹Department of Physics, Faculty of Science, University of Peradeniya, Peradeniya; ²Physics and Engineering Physics, Chalmers University of Technology, Gothenburg, Sweden.

Ce_{0.9}Gd_{0.1}O_{1.95} (GCO), is one of the potential candidate electrolytes for Intermediate Temperature Solid Oxide Fuel Cells (ITSOFC). GCO has a higher oxide ion conductivity in the intermediate temperature range (500-700 ° C) compared to other Ce_{1-y} Gd_y O_{2-y/2} compositions and Gd³⁺ ion is the most appropriate dopant material compared to other rare earth materials such as Sm³⁺, Y³⁺, Zr⁴⁺, etc. In this work, gadolinium doped ceria (GCO) powder, Gd_{0.10} Ce_{0.90} O_{1.95}, purchased from Seatle Specialty Ceramics, Inc., was dried for 24 hours at 100 °C, and GCO pellets were prepared. The conductivity measurements were taken in air, in 2 % O₂ in argon, and in 5 % H₂ in argon environments using platinum painted electrodes. I~V characteristics of H₂ /Pt/ GCO/Pt/O₂ fuel cell arrangement was measured using a computerized 34970A data acquisition system with platinum electrodes as the porous anode and the porous cathode in the temperature range of 500 - 700 °C, where 99.999% pure H₂ was used as the fuel at constant flow rate while normal air oxygen was used as reducer at the cathode.

Results show that the fuel cell $H_2/Pt/Ce_{0.9}Gd_{0.1}O_{1.95}/Pt/O_2$ operated within the temperature range of 500 - 700 °C gives the maximum power densities of 0.0049 W cm⁻² at 500 °C and 0.0126 W cm⁻² at 650 °C for cell voltages 0.6275 V and 0.6278 V, respectively, when the electrolyte is kept in 5 % H_2 for 12 hours before using in the fuel cell. The maximum power densities obtained for the same cell are 0.0038 W cm⁻² at 500 °C and 0.0270 W cm⁻² at 650 °C for cell voltages 0.5986 V and 0.5913 V, respectively, when the electrolyte is kept in 2 % O_2 for 12 hours before using in the fuel cell.

Financial assistance by the University Research Grant (RG/2002/68/S) and research support from Chalmers University of Technology, Sweden, and IPPS, Uppsala, Sweden are gratefully acknowledged.