Abstract No: 447

IT, Mathematics and Statistics

CONSTRUCTION OF DIVISIBLE DESIGNS FROM NORMALIZED HADAMARD MATRICES

A.A.C.A. Jayathilake^{1*}, A.A.I. Perera¹ and M.A.P. Chamikara²

¹Department of Mathematics, Faculty of Science, University of Peradeniya, Sri Lanka ²Postgraduate Institute of Science, University of Peradeniya, Sri Lanka *chathranee_06@yahoo.com

Construction of block designs is an important part of design theory. Literature shows that there are several ways of constructing block designs with parameters (v, k, λ) . Further, the correspondence between Hadamard matrices and block designs is well known. One can obtain a (v, k, λ) –design from Hadamard matrices and vice versa. These designs have the property that any two points occur in exactly λ blocks. Also, the graph drawn for these designs are k –regular graphs such that any two vertices have exactly λ neighbours.

In this study, we present a method to construct a generalized (v, k, λ) –design with a large point set using the normalized Hadamard matrices. First, a regular Hadamard matrix with row/column sum is constructed and then, this regular Hadamard matrix is used to obtain the incidence matrix *M* of the generalized design. This construction splits the design into two (v, k, λ) –designs with a new set of parameters $(v, k, \lambda_1, \lambda_2)$ where $v = 6m^2, k = 2m^2 + m$, $\lambda_1 = m^2 + m$ and $\lambda_2 = \frac{m^2 + m}{2}$.

By taking the matrix M as the adjacency matrix, one can draw a graph. Since this design has a constant block size k, the resulting graph is a k -regular graph. But any pair of vertices have either λ_1 or λ_2 common neighbours. This construction results two different (v, k, λ) -designs that can be obtained with the same point set and equal block size which can be used in coding theory, cryptography and image analysis.