ON PRODUCTS OF HALF-PLANE MAPPINGS

S.D. Chandrasena and A.A.S. Perera*
Department of Mathematics, University of Peradeniya, Peradeniya, Sri Lanka *aasp@pdn.ac.lk

Let $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ and let f and g be functions analytic in \mathbb{D}. Then f is said to be subordinate to g if $f(z)=g(\varphi(z))$ for $z \in \mathbb{D}$, where $\varphi: \mathbb{D} \rightarrow \mathbb{D}$ is analytic in \mathbb{D} with $\varphi(0)=0$. This is denoted by $f \prec g$. A trivial modification of the Herglotz representation formula for functions subordinate to half-plane mappings implies that if

$$
f \prec \frac{1+c z}{1-z}, \text { where }|c|=1 \text {, then } f(z)=\int_{\partial \mathbb{D}} \frac{1+c x z}{1-x z} d \mu
$$

where μ is a probability measure on the unit circle $\partial \mathbb{D}$.
In 1989, Koepf considered the class of functions p normalized by $p(0)=1$ and $p \prec \frac{1+c z}{1-z}$ for some $|c|=1$ and proved that each function of the form
$p_{n}(z)=\sum_{k=1}^{n} \lambda_{k} \frac{1+c x_{k} z}{1-x_{k} z}$, where $\left|x_{k}\right|=|c|=1, \lambda_{k}>0$ for $k=1,2, \ldots, n$ and $\sum_{k=1}^{n} \lambda_{k}=1$
has a representation of the form

$$
p_{n}(z)=\prod_{k=1}^{n}\left(\frac{1-y_{k} z}{1-x_{k} z}\right), \text { where }\left|x_{k}\right|=\left|y_{k}\right|=1 \text { for } k=, 2, \ldots, n
$$

and $\arg x_{1}<\arg y_{1}<\arg x_{2}<\arg y_{2}<\cdots<\arg x_{n}<\arg y_{n}<\arg x_{1}+2 \pi$.

$$
(* *)
$$

In this study we first give a new proof of the above product representation using the following known representation for finite Blaschke products:

If B is a finite Blaschke product with $B(0)=0$, then $\frac{1+B(z)}{1-B(z)}=\sum_{k=1}^{n} \lambda_{k} \frac{1+x_{k} z}{1-x_{k} z}$,
where $\left|x_{k}\right|=1, \lambda_{k}>0$ for $k=1,2, \ldots, n$ and $\sum_{k=1}^{n} \lambda_{k}=1$.
We then considered the question of whether each function of the form ($* *$) has a representation of the form (*). We were able to prove it for $n=2$ directly. Since the computation becomes tedious for $n=3$ with the direct method, we employed the Herglotz representation formula to prove it. Based on the above results and verification for some more cases using Mathematica, we conjecture that each function of the form
$p_{n}(z)=\prod_{k=1}^{n}\left(\frac{1-y_{k} z}{1-x_{k} z}\right)$, where $\left|x_{k}\right|=\left|y_{k}\right|=1$ for $k=1,2, \ldots, n$
and $\arg x_{1}<\arg y_{1}<\arg x_{2}<\arg y_{2}<\cdots<\arg x_{n}<\arg y_{n}<\arg x_{1}+2 \pi$
has a representation of the form $p_{n}(z)=\sum_{k=1}^{n} \lambda_{k} \frac{1+c x_{k} z}{1-x_{k} z}$, where $\left|x_{k}\right|=|c|=1, \quad \lambda_{k}>0$
for $k=1,2, \ldots, n$ and $\sum_{k=1}^{n} \lambda_{k}=1$.

