DEGREE OF PHOSPHORUS SATURATION IN SOME SOILS OF SRI LANKA

E.A.G.S. Amarawansha, S.P. Indraratne and U.K.P.S. Sanjeevani

Department of Soil Science, Faculty of Agriculture, University of Peradeniya

Introduction

Phosphorus (P) makes up about 0.12 % of the earth's crust and it is an essential nutrient which leads to optimum growth and crop production (He et al., 2004). Longterm continuous application of P fertilizers and other P sources may cause P accumulation in the surface horizon (Zhang et al., 2004). Loss of accumulated P from agricultural soils is one of the major causes of eutrophication in surface waters (Pote et al., 1996). The degree of P saturation (DPS) which relates the extractable P of a soil to its P adsorption capacity is a good indicator of the potential of the soils to release P to cause environmental problems (Ige et al., 2005; Nair et al., 2004). Studies of P saturation in Sri Lankan soils are rare to find or not exist. The degree do of phosphorus saturation is the percent ratio of P retained by soil to the total capacity of soil to retain P (ES_{Max}). Main limitation of using ES_{Max} is the time consuming steps involved in the determination. P sorption index (P_{150}) , which is the measurement of P adsorption at 150 mg L⁻¹ of added P, is used as an alternative for ES_{Max} for many soils (Ige et al., 2005). Therefore, the objectives of this study were to develop relationships between ES_{Max} and P₁₅₀, and between P₁₅₀ and exchangeable cations in soils, and to calculate DPS for major

Sri Lankan soils and relate DPS to available P in soils.

Materials and Methods

Twenty seven surface soil samples were collected from different locations of the country representing the major soil orders in Sri Lanka. Air dried and sieved (< 2 mm) soils were analyzed for pH, Mehlich 3 extractable P, Ca, Mg and Fe and Oxalate extractable Fe. Single point P adsorption capacity (P_{150}) and adsorption estimated capacity (ES_{max}) using Langmuir adsorption maxima were also determined. DPS was calculated using ES_{max} and P₁₅₀ as the numerator and Mehlich 3 extractable P (P_{M3}) as the denominator. Relationships were developed between calculated DPS and water extractable P (P_{H2O}) which could be used as an index of P in runoff losses.

DPS $(P_{150}) = P_{M3} / P_{150} \times 100....(1)$ DPS $(ES_{Max}) = P_{M3} / ES_{Max} \times 100..(2)$

Results

Phosphorus sorption index (P_{150}) varied from 192 to 1454 mg kg⁻¹ while ES_{max} was varying between 625 to 5000 mg kg⁻¹ among the soils. Single point adsorption capacity is a good indicator to represent estimated adsorption capacity (ES_{max}) of soil due to the good relationship between both parameters (Figure 1). Significant relationships were observed (Table 1) between P_{150} and Mehlich extractable Ca ($r^2 = 0.562$), Mg ($r^2 = 0.698$) and oxalate extractable Fe ($r^2=0.624$) for soils.

Degree of P sorption values obtained using P_{M3} with P_{150} (Equation 1) ranged from 0.014 to 7.805 % while DPS calculated using the Es_{Max} as the denominator (Equation 2) ranged from 0.007 % to 2.66 %. DPS calculated using equation 1 and 2 significantly correlated with r²=0.91. Water extractable P positively correlates with DPS calculated by both equations. Table 1. Correlation between singlepoint P adsorption isotherm (P150)and exchangeable cations

Correlation	r ²
Ca _{M3} * P ₁₅₀	0.562 (p<0.01)
Mg _{M3} * P ₁₅₀	0.698 (p<0.001)
Fe _{ox} * P ₁₅₀	0.624 (p<0.001)

Discussion

Mehlich extractable Ca and Mg, and oxalate extractable Fe correlate well with P sorption index confirming the formation of these metals with for P retention in soils. Degree of P saturation of the tested soils was less than 10 %, indicating the low environmental risk due to P losses.

Figure 1. Relationship between calculated P adsorption at 150 ppm concentration (P_{150}) and estimated adsorption maximum using linear form of Langmuir isotherm (ES_{max})

Studied soils showed considerable lower extractable P with higher adsorption values. Low DPS values of the studied soils indicate the low susceptibility of P runoff loss of these soils. DPS evaluated, were correlated with P_{H2O} , indicating the validity of calculated DPS for P loss assessments.

Conclusions

Phosphorus sorption index can be used to evaluate P adsorption capacity in tested Sri Lankan soils. Mehlich extractable Ca and Mg and oxalate extractable Fe provide a convenient tool for P management in the country. Therefore, these exchangeable cations are good indicators for predicting P losses from Sri Lankan soils. According to the results, studied soils are not at a risk of P loss from soil to water based on the calculated DPS.

Reference

- He, Z., Griffin, T.S. and Honeycutt, W. (2004). Evaluation 0f Soil Phosphorus Transformation by Sequential Fractionation and Phosphatase Hyrolysis. Soil science, 169:515-527.
- Ige,D.V., Akinremi, O. O and Flaten, D.N. (2005). Environmental Index for Estimating the Risk of Phosphorus Loss in Calcareous Soils of Manitoba. J. Environ. Qual. 34:1944-1951.
- Nair, V. D., Portier, K.M., Graetz, D.A. and Walker, M. L. (2004). An Environmental Threshold for Degree of Phosphorus Saturation in Sandy Soils. J. Environ. Qual., 33:107-113.
- Pote, D.H., Daniel, T.C., Shapley, A.N., Moor, P.A., Edwards, D.R. and Nichols, D.J. (1996). Relating Extractable Soil

Phosphorus to Phosphorus Losses in Runoff. Soil Science Society of America Journal, 60: 855-859.

Zhang, T.O., MacKenzie, A.F., Liang, B.C. and Drury, C.F. (2004). Soil Test Phosphorus and Phosphorus Fractions with Long-term Phosphorus Addition and Depletion. Soil Science Society of America Journal, 68: 519-528.

