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Introduction

Artificial Braided Pneumatic Muscles
(ABPM) are widely used in different
industrial disciplines, especially in
robot-arm manufacturing because of
the lesser weight, better sensitivity for
reactive forces, similarity to the human
muscle operation and the simplicity.
The ABPM is primarily a cylindrical
air-actuator having a rubber bladder
acting as an air seal, surrounded by

inelastic fibre mesh to control its
expansion. When the ABPM
pressurises, the diameter of the

cylinder increases whilst the length
decreases. (Figure 1)
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Figure 01. The expansion and the
contraction of the ABPM

When an external pulling force is
acted at the end of the ABPM, it takes
an extension x from the point of
maximum contraction. The objectives
of the research are to construct a
mathematical model that computes the
force exerted for a given extension at a
known pressure based on reasonable
assumptions and to validate the model
using actual data (presented by the
manufacturers).

Since the innovation of the
*Expandable Cover’ in early 1940s by
C. R. Johnson and R. C. Pierce, there
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were renovations of the same concept
for different purposes such as using it
as an actuator by Gaylord and
medical-physical  applications by
McKibben [Chou et al 1996]. In
addition, the  development of
Mathematical Models such as Gaylord
in 1965, Chou et al in 1996, Colbrunn
et al in 2001, etc describing the
operation have taken place. However,
the number of research carried out so
far for analytical modelling is
insufficient while the available models
are complicated and subjected to
errors. For example the formula
derived by Chou and Hannaford in
1996 contains the braid angle & in the
final model, leading practical
difficulties in applying it, as € varies
with extension x and due to the
difficulties of taking instantaneous
measures. The energy method used by
Klute is complicated and the results
are not accurate enough compared
with the complexity. Colbrunn’s
results are not accurate as Klute's
Model, or the Model described in this
paper. Presently Festo Corporation,
Bridgestone and Shadow Robot
companies manufacture the ABPMs.

Materials and Methods

A prototype ABPM was used to
understand the configuration. Because,
the length in the ending conical
portions is negligible compared to the
total length, the pressurised ABPM
was assumed as cylindrical. The stress
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on the rubber bladder was neglected,
as it is a highly elastic material having
a negligible thickness. First, the hoop
and the longitudinal stresses were
calculated. Then the tensions were

deduced.

Figure 02. Tensions at a crossing

Let T be the tension of a fibre band
caused by an extension x. Let T\, T,
indicate the tensions acting along two
fibres at a crossing (Figure 2). (T, and
T, are equal in magnitude) Dotted
arrows show the resolved components
of T, and T, along the hoop and the
longitudinal directions respectively.
The summation of the longitudinal
components Ty, Ty leads to the
longitudinal tension (T, ) that drives
the axial motion of the ABPM. The
Hoop components T,y and T,y are not
cancelling off as they are acting on
two fibre bands. In fact, they lead to
increase 26 , the angle between two
fibre bands in a crossing, causing the
radial expansion. As the total
longitudinal tension NT_. (N is the
number of fibre bands), drives the
axial motion of the ABPM., each T,
leads to decrease 26 . Therefore, the
arithmetic difference between NT,:

(I7,.|=|7.,| =|7|) and the total hoop

tensions NTw: (|T,,|=|%y|=|T,)
determines the ABPM operation. Let
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T, be the difference of 7, and 7, . Then
the force F, exerted by the ABPM is;

p
F, =Y T cos@=N(T,—T,)cosf (1)

=1

Results

Let x — be the extension from the point
of maximum contraction.
x=(0-k)L-L (2)

where L, is the length of the cylinder

at maximum contraction, and L is the
length before pressurizing. k& is the
percentage contraction and the
practical observation of 20% was used
in simulation as the upper bound of & .
G=tan"'(nD, AL, +x)) 3)

where n — is the number of fibre turns
per cylinder length. (n = 2 for the
prototype ABPM) D _ is the diameter
at an extension, x. Considering the

volume consistency at maximum
contraction, and at k% of contraction,

Dx = Dm ,’L” /{Lm +x) 4)
D_ :the diameter at L.,
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Figure 03. 0o, and o,

The hoop stress o, (Figure 3-a) and
the longitudinal stress o, (Figure 3-b)
are given by the equations (5) and (6).
o, =(D, - 2w)P/2w (5)
0, =(D, —2w)’ P/[4w(D, - w)] (6)
where P is the actuator pressure, and
w is the cross sectional height of a
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fibre band. The cross section of a fibre
band was assumed as rectangular
having a width of 2w as opposed to
the adjacent circular cross sections.
The equation (7) holds for any stress.

(8), (9) compute the hoop force F,

and the longitudinal force F,.

c=FlA (7

where, F is the force, and A is the

cross sectional area.

F, =nNT,Sinf, (8)

E, = nNT,Cos0, 9)

Solving the equations (5). (6). (7). (8)

and (9) yields,

_P(D, —-2w)L, +x)

B 2nNSinG.

T = P(D, -2w) (L, +'x?(.'ost?‘. (11
4nN(D, —w)Sin’0,

At maximum contraction (Fig 02)

x=0,7,=T7,,D,-» D, and 6, > 8,

(10)

L]

= ?-;'H - Tﬂ. :_folr‘k = '.2 (12)
Ty =7, sin6, (13)
1, =T, cosd, (14)

By simplifying (12), (13) and (14):
g, =45° (15)

Discussion

The equations above calculate <, (in
Equation 01). The experimental data
variations were taken from the product
specifications provided by Bridgestone
Co. Ltd. for comparison purposes.
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Figure 04. Simulation

The comparison infers that the formula
predicts F, with reasonable accuracy
(simulation for 40 c¢m actuator). The
variables w, n and N were assigned in
comparison with the prototype of
length 35 cm. The model might
perform better with precise parameter
values. The experimental data show a
hysterisis due to the friction

Conclusion

Tensions at the conical ends ignored
and it may cause an error. However
the longer the cylinder, the lower the
ratio of conical length to cylindrical
length and therefore the model suits
better for longer ABPMs and it has to
modify for shorter ABPMs. As the
model is sensitive for the accuracy of
the parameters, they have to be
measured carefully. The hysterisis may
be obtained by incorporating the
friction.
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