FACTORISATION OF SEMIREGULAR RELATIVE DIFFERENCE SETS

A.A.I. PERERA

Department of Mathematics, Faculty of Science, University of Peradeniya, Sri Lanka

Relative Difference Sets (RDSs) have been found by a number of techniques, and there are iterative methods which construct a larger relative difference set as the product of given smaller relative difference sets. Recently, J.A. Davis and A. Pott have shown how to construct a new RDS in a larger group by taking product of two RDSs in smaller groups.

This work shows under certain conditions, how to factorize a given relative difference set in a bigger group to two relative difference sets in smaller groups.

We work in the group algebras R[G], where R is a commutative ring with identity and G is a finite group, and in the twisted group algebras $R^{\alpha}[G]$, where α is a cocycle over G. We will follow standard practice and identify any subset X of G with the group algebra element $X = \sum_{\alpha \in X} x$ in R[G].

Theorem:

Let $G = K \ge H$ be a finite group with $|K| = v_1$ and $|H| = v_2$, let C be a finite abelian group of order w such that $w|v_1$ and $w|v_2$, and let $\alpha : K \ge K \rightarrow C$ and $\beta : H \ge H \rightarrow C$ be cocycles.

If $T(\alpha \otimes \beta) = \{(1, g) : g \in G\}$ is a relative $(v_1v_2, w, v_1v_2, v_1v_2/w) - \text{differences set in} E_{\alpha \otimes \beta}$ relative to C x 1, then $T(\alpha \otimes \beta)$ factorises into relative differences set; that is, $T(\alpha)$ is a relative $(v_1, w, v_1, v_1/w)$ -differences set in E_{α} relative to C x 1 and $T(\beta)$ is a relative $(v_2, w, v_2, v_2/w)$ -difference set in E_{β} relative to C x 1.