BACTERIUM HOST CELL INTERACTIONS: EFFECT OF *HAEMOPHILUS SOMNUS* ON PHAGOCYTOSIS, NITRIC OXIDE PRODUCTION AND CHEMILUMINESCENCE RESPONSE OF BOVINE MONONUCLEAR PHAGOCYTES

S. GOMIS1,2, D. GODSON1, G. WOBESER2, A. POTTER1,3

1Veterinary Infectious Disease Organization, 2Department of Veterinary Pathology, University of Saskatchewan, Canada, 3Canadian Bacterial Diseases Network.

The interaction between bovine mononuclear phagocytes (BMP) and *Haemophilus somnus* are known to be complex. Using a flow cytometric phagocytosis assay, it was found that logarithmically growing *H. somnus* significantly inhibited the phagocytosis of opsonized *S. aureus* by bovine alveolar macrophages (BAM) obtained both from healthy calves and from cattle experimentally infected with *H. somnus*. However, neither heat- nor formalin-killed, logarithmically growing *neither H. somnus nor in vitro* passed *H. somnus* showed any effect on the phagocytic activity of these cells. In contrast to BAM, bovine blood monocytes (BBM), had a significant increase in their phagocytic activity following \textit{in vitro} exposure to logarithmically growing *H. somnus*. The bactericidal ability of bovine mononuclear phagocytes in interaction with *H. somnus* was studied using two \textit{in vitro} assay systems measuring nitric oxide (NO) production and chemiluminescence response. *H. somnus* rapidly inhibited the Luminol-dependent chemiluminescence (LDCL) of BBM, and of BAM costimulated with opsonized *Staphylococcus aureus*. Inhibition of the LDCL response of BBM and BAM was abrogated with either opsonized or killed *H. somnus*. In contrast to inhibition LDCL of BMP, both BBM and BAM infected with *H. somnus* had stimulated production of NO. Using a calorimetric bactericidal assay, it was found that: (1) *H. somnus* was able to survive within BBM \textit{in vitro} and the kinetics of its survival were similar to that seen in BBM isolated from experimentally infected cattle; (2) treatment of BBM with varying concentrations of \textit{BoIFN-γ BoTNF-α, BoIL-β, BoGM-CSF} and \textit{E. coli} LPS had no effect on the survival of *H. somnus*. Moreover, using ultrastructural studies, and \textit{3H-uracil} incorporation into nucleic acids, it was possible to demonstrate the survival of *H. somnus* in BMP. These results indicate that the ability of *H. somnus* to modulate microbicidal activity of BMP would, in turn, assist the intracellular survival and immunopathogenesis of bovine haemophilosis.