C NO X

DEVELOPMENT OF SOLAR CELLS BASED ON DYE-SENSITIZED TITANIUM DIOXIDE WITH SOLID-STATE ELECTROLYTE

A THESIS PRESENTED BY

ANUSHYA MAHENDRALINGAM

to the Board of Study in Chemical Sciences of the

POSTGRADUATE INSTITUTE OF SCIENCE

PERMANENT REFERENCE FOR USE IN THE LIBRARY ONLY

in partial fulfillment of the requirement for the award of the degree of

MASTER OF PHILOSOPHY

Of the

UNIVERSITY OF PERADENIYA'
SRI LANKA

2003

ABSTRACT

Nano structural dye-sensitized solar cells based on titanium dioxide traditionally use a liquid electrolyte such as acetonitrile, which causes many difficulties. In this study, quasisolid state dye-sensitized Photoelectrochemical cells of the type, FTO/TiO₂/dye/(15%) Polyacrylonitrile, (35%)ethylene carbonate, (50%)propylene carbonate, tetrapropylammonium iodide, iodine/Pt/FTO have been fabricated and characterized using current-voltage measurements. The short-circuit current (I_{sc}) obtained at 1000 Wm⁻² was 6 mA and efficiencies obtained for solid electrolyte solar cells with and without 4-tertiary butyl pyridine are 2.9 and 1.6% respectively. A mechanism involving "trapping" of the liquid electrolyte on the Polyacrylonitrile (PAN) structure is proposed for the efficiency of this solid electrolyte.

For comparative purposes *cis*-di(thiocyanate)bis(4,4'-dicarboxy-2,2'-bipyridyl)ruthenium(II) (RuL₂(NCS)₂) was investigated. Bis((4,4'-dimethoxy-2,2'-bipyridyl)-4,4'-dicarboxy-2,2'-bipyridylruthenium(II) (RuL'₂L) dye was also prepared as a possible sensitizer. The short-circuit current, open-circuit voltage and efficiencies of the latter dye were very low compared to (RuL₂(NCS)₂). From action spectra, the maximum incident photon conversion efficiencies of 5 and 0.5 % were obtained at 530 nm for RuL₂(NCS)₂ and 470 nm for RuL'₂L respectively.

Charge recombination between dye-sensitized nanocrystalline TiO_2 electrodes and I_3 /I couple in nonaqueous and quasi-solid electrolyte is described. The sensitizer was $RuL_2(NCS)_2$. Treating the dye-coated TiO_2 electrodes with 4-tertiary buty pyridine and 8-hydroxyquinoline improves significantly both the open-circuit voltage V_{∞} (from 650 to 750 mV) and the efficiency (from 4 to 6 %) at 1000 Wm⁻² with respect to

untreated electrode. The use of 8-hydroxyquinoline for this purpose has been successfully demonstrated.

Double dye systems using $RuL_2(NCS)_2$ and methyl violet thiocyanate simultaneously adsorbed on titanium dioxide film give enhanced photocurrents and quantum efficiencies. The results show that this is not a simple additive effect. This can be explained by the interaction of the two dyes via chemical interactions where charge recombination is suppressed due to charge separation.