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Introduction

Magic squares have been studied for at least
three thousand years, the earliest recorded
appearance dating to 2200 BC, in China.
In the 9th century, Arab astrologers used
them in calculating horoscopes, and by 1300
AD, magic squares had spread to the West.
An engraving by the German artist Albrecht
Diller included a magic square in which the
artist embedded the date, 1514, in the form
of two consecutive numbers in the bottom
row. Because the concept of a magic square
is so easily understood, magic squares have
been particularly attractive to puzzlers and
amateur mathematicians. In modern mathe-
matics, the notions pertaining to magic squa-
res are utilized to characterize magic graphs
as well as magic cubes. (Jezny and Trenkler
et al, 1983 and Adler, Robert Li et aI. 1978)

The nth order magic square is an n x n ar-
ray consisting of the first n natural numbers
such that the sum along rows, along columns
as well as along two diagonals are all equal

n(n2 + 1)
to 2 . Of course, given any magic
square, a rotation or reflection will produce
another magic square. Not counting these
as distinct, it is known that there is only one
3rd order normal magic square, and there are
880 normal 4th order magic squares. The
number of distinct normal magic squares in-
creases dramatically with its size. For in-
stance, there are over 13million normal mag-
ic squares of 5th order. The algorithm de-
vised in this endeavor produces only one such
normal magic square for a given odd natural

number.

Even though the computational aspects of
lower order magic squares are fairly simple
and straightforward, those of the higher or-
der counterparts demand memory and time
efficient algorithms. The computational time
as well as the memory requirement for the
computation of n x n magic square are both
of order n2. The unavailability of a closed
form expression for the nth order magic squa-
re results lengthy source codes. Moreover, as
n becomes very large, high memory require-
ment makes the computation of nth order
magic square impossible. In this endeavor,
it is attempted to devise a memory efficient
algorithm and formulate a closed-form ex-
pression to compute odd higher order magic
squares by formulating de la Loubere type
magic square.

The objectives of this work are to develop
memory efficient algorithms in the context
of nth (n mod 2 = 1) order magic square to
determine,

(a) the cell (i,j) E N x N for a given k
satisfying 1 ::; k ::; n2, and

(b) the entry k with 1 ::; k ::;n2 when the
cell (i,j) EN x N is specified,

where N = {I,2, ... ,n].

Preliminaries

Letting the entry of the ith row and the jth

column of the magic square be Xi;, the prob-
lem of magic square can be formulated as fol-
lows. For the sake of notational simplicity,
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henceforth, unless specified otherwise, the
entry of the cell corresponding to the ith row
and the ph column of the nth order magic
square is denoted by Mn(i,j). Then,

n
n(n2 + 1)

2LXij
j=1

n

EXij
i=1

for i = 1, ... ,n
n(n2 + 1)

2
for j = 1, ... ,n

n(n2 + 1)
2

n(n2 + 1)
2

n

LXii
i=1

n

LXn+1-j,j
j=l

where Xij E {I, 2, ... ,n2}.

It should be noted that the solution of the
problem is not unique. The optimum algo-
rithm available at present is used in MAT-
LAB. In MATLAB, two n x n arrays are de-
clared by the function MESHGRID in the
process of obtaining the nth order magic squ-
are. Then those two n x n arrays are manip-
ulated to obtain the nth order magic square.
Thus, it is obvious that the demand for the
memory is an issue as n becomes large. To
comprehend the demand for the memory and
the associated complexity of other existing
algorithms, consider the following algorithm
used in MATLAB.

function M = magic(n)

n = floor
...(real(double(n(l))));

if mod(n,2) := 1
[J,IJ = meshgrid(l:n);
A = mod(I+J-(n+3)/2,n);
B = mod(I+2*J-2,n);
M = n*A + B + 1;

end
In the case of the above MATLAB routine,
A, B, I and J are of nth order square matri-
ces. Thus, the memory requirement and the
computational time pertaining to the above
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algorithm may be very high as n becomes
very large. The case is the same for the other
existing algorithms used for computation of
magic squares. The algorithm devised in this
work requires much less computer memory
as well as computational time.

The main result

The following results are conjectured and pr-
oved in this work. For the sake of brevity,
their proofs are not presented here.

Theorems
Theorem 1. For a given nand k satisfying
n mod 2 = 1 and 1 ~ k ~ n2,

Mn (a, b) = k,

where

a = en + ~k - 3) -l k ~ 1J) mod n

+1

and

b = (n + k - 2 - -l k ~ 1J) mod n

+1

Example 1. If n = 7, using the above algo-
rithm, the MATLAB routine

n=7;
for k=1:n-2,
a=mod«n+2k-3)/2+

...floor«k-1)/n),n)+1;
b=mod «n-k-2+

...2*floor«k-1)/n),n)+1
H(a,b)=kj
end;
produces 7th order magic square as

30 39 48 1 10 19 28
38 47 7 9 18 27 29
46 6 8 17 26 35 37
5 14 16 25 34 36 45

13 15 24 33 42 44 4
21 23 32 41 43 3 12
22 31 40 49 2 11 20
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Remark 1. In the light of Example I, it is
obvious that this algorithm converts a prob-
lem which demands the manipulation of two
n x n arrays, to a problem of simplifying
a simple expression involved two variables,
namely, nand k.

Theorem 2. Denoting {1,2, ...,n} by N,
for a given cell (i,j) E N x N, the cor-
responding entry Mn(i,j) of the nth order
magic square is given by

M ( .. ) [.. (n - 1)] dnt,J =n t-J+--2- mo n+
(2i - j - 1) mod n + 1.

Example 2. If n = II, using the above
algorithm, the MATLAB routine

n=l1;
for j=l:n,
H(2,j)=n*mod( i-j+(n-l)/2,n)+
...mod(2i-j-l,n)+1;
end;

produces the set of entries in the second row
of the 11th order magic square as

93
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Conclusions

Unlike the other algorithms associated with
magic squares, this algorithm can be con-
verted to any high level language very easily
due to the absence of manipulations of ar-
rays. Nevertheless, it should be noted that
the above algorithms are not applicable for
the even order magic squares. Moreover, the
improvement of the time efficiency associ-
ated with the algorithms developed in this
endeavor are quite insignificant. Hence, the
above facts should be considered in the pro-
cess of generalizing and extending the af-
orementioned algorithms to make them ap-
plicable for the computation of a magic sq-
uare of any order.
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