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Introduction
Exponential family of distributions is an
important class of distributions in statistics.
Estimation of mean and variance of the
distributions of this class is one of the problems
that the researchers are involved. Several
Statisticians have considered the estimation of
mean in one parameter exponential families
when coefficient of variation is known, and an
improved method in this regard was given by
Wencheko and Wijekoon (2005). Morris
(1982) and Letac and Mora (1990) showed that
the variance of some basic types of
distributions belong to the one parameter
exponential family is a polynomial function of
the mean ~ with degree less than or equal to 3.
The objective of this study is to derive an
optimal shrunken estimator for these variance
functions.

One parameter exponential family and
variance functions
Consider the random vector X = (X), ... , Xn)

whose probability density function is a function
of the parameter e, where e E e for some
interval e ~ m. Then the family of
distributions ofa model {Po: e E 0} is said to
be a one parameter exponential family, if there
exists real valued functions, 17(B) , B(B) , T(x)
and h(x) such that the probability density (or
mass) function f(x;e) of Po can be written as

/(1::r'; = h(x)exp[17(B )T(x)-B(B)] (1)

The parameter 17(B) is called the natural
parameter of the distribution, and T(x) is called
the natural statistic. The family of distributions
obtained by taking iid samples from one-
parameter exponential families are themselves
one-parameter exponential families. A useful
reparametrization of the exponential family can
be obtained by setting 1] = 1](B). Then the
exponential family has the form

/ \(x:1])=h( x )exp[1]T( K) - A(1])]'

where, T(K)= :ET(x;) is a sufficient statistic,
and i=1

A(1])=/ogf .... fh(x)exp[1]T(K)]dx in the
continuous case and the integral is replaced by
a sum in the discrete case.
Therefore, E(T(J) = A '(1]) , Var/T(K») = A '(1]) ,

and the moment-generating function
lfI(s)=exp[A(s+ 1])-A(1])] for s in some

neighborhood of 0, if it exists.

Morris (1982) has shown that exactly six basic
types of natural exponential families (NEFs)
have quadratic variance function (QVF). He
considered normal, Poisson, gamma, binomial,
negative binomial and the NEF generated by
the generalized hyperbolic secant (GHS)
distributions. However, Letac and Mora (1990)
have given variance functions for the above six
plus another six distributions that are inverse
Gaussian, Abel, Takacs, strict arcsine, large
arcsine, and Ressel, which have cubic variance
function (CVF). In both these cases, it is clear
that the variance is a polynomial function of
the mean f.J with degree less than or equal to
3, which can be described by
VF (U)= ';0 +1;11./+';21./2 +';31./3 (3)

where, ';0,';1'';2,';3 E9l are constants.

Methodology and results

Gleaser and Hearly (1976) have considered the
minimization of mean square error of linear
combination of two uncorrelated and unbiased
estimators of B having a known coefficient of
variation. In the following theorem, their
results were generalized by considering one
estimator for the parametric function g(B)
when the ratio v2 = [g{B)]-2 Var[T~)] is
independent of B. Note that in this case, the
estimator T~) is not necessarily an unbiased
estimator for g(B).

(2)
Theorem J

Let X = (XI"" ,X,.) be a random sample
from a population WIth distribution f(x;B) and
g(O) be a real-valued function on 0. Let T(K)
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be a point estimator of g(e) with
E[r(r)] = kg(e) where k E!Tl , and without loss
of generali~> assume that k > O. If the ratio
y2 = [g!e)t Varlr(X}] is independent of e,
then r (K) =a r(K) has uniformly minimum
mean squared error (in g(e) among all
estimators that are in the
class Cr!a)= {ar(r)~ 0 < a < oo},
where a = k 1«' 2 + y ).

Proof: SinceElr'(r)j= a kg(e) , and

Var~' (r)j= a2Var[T(r)], the mean squared

error (MSE ) of r' (r) is

MSE{r* (r)j =a2 Var[r(r)] + (a k _1)2 [g(e)J2 .
Hence, it can be easily shown that the estimator

t' (r) = k (k2 + y2 )1 r(r) minimizes MSE
over Cr(a), and the minimum MSE is given
by

MSE[r' (r)j = y2 (k2 + y2 t [g(e)]2

Then it can be shown that
MSElT' (r)< MSE[r(X)j.

Therefore, it is clear that the estimator r' (r)
is uniformly better than the estimatorT(r), and
that r(r) is inadmissible, and more generally
r'(r) is uniformly better than any other
estimators in the class Cr (a) .

The above theorem can be applied for
estimation of certain variance functions VF ~!~
for which the estimator is of the form T 1)£,
with y2 = c(n) k2,,2 where c(n) is a known, ,
constant depends on n , and r is the coefficient
of variation of the probability distribution
which is assumed to be known.

Applications

The following applications illustrate the use of
the above results.

Binomial distribution: Let
Xi - B(r,p), i= I .. -n, 0 < p < I, and r be fixed. In
this case for an iid sample ofB(r,p) one can
identify
•• J....!'-). r» uPv',L,. B(p)-_,,,,(I-p), A(")-""ocil+uP(.)1

..••.ll-p l+np~'1J

Then the mean and variance for the natural
n

sufficient statistic r(r) =I Xi
i=l
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is A'(r, ) = nrp and A "(I] ) = nrp(l- p)

respectively. Then a = 11r(n + ,,2) ,
where T is the coefficient of variation of the
distribution, which is assumed to be known,
and y2 = nr2,,2. Thus, according to Theorem 1,
the optimal shrunken estimator of the

n
parameterpis T'(r)= IXi Ir(n+,,2).

i=l
n

Hence, IXi l(n+,,2) is the optimal
i=1

shrunken estimator of the mean J.i = rp , which
is precisely the estimator proposed by
Wencheko and Wijekoon (2005).

Using the derivatives of,
'Pr (t) = exp[A(1] + t)- A (I] )]

= (r1« exptr; + t)] If 1+ expt n )]r
which is the moment generating function of
r(r) and Theorem 1, it can be shown that the
optimal shrunken estimator of the function
p(l- p) is

t{M=rp[nF- tx; }nF-r0+r-tf +~nF-2XnF-~

Note that in this case k = nr(nr -1) and
g(p) = p(l- p). Hence,

rtx;[nr- tx}nr-I~"+T-lf +~nr-2Xnr-3) is

the optimal shrunken estimator of the variance
VF (P) = rp(I- p ~ Similarly, the optimal
shrunken estimator of the variance functions of
some basic types of NEF"s are given in the
following Table 1.

Conclusions

When the coefficient of variation t of the
distribution is known the above admissible
shrunken estimators of the variance functions
have minimum mean squared errors in the
class Cr (a)= {ar(r) I0 < a < oo} .
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Table 1. Optimal shrunken estimators of the variance functions of several distributions, which
belong to NEFs

Name of the type

i:(x; -XnY I(n+l)
;=1

2 Poisson Poiss (A)

3 Negative binomial
NB{r,p)

nLX; I(n+ 1'2)

;=1

?p[nr+ tAl lXnr+l~1'-1'-lr +~nr+2Xnr+3)

-[t. X,r It"' + 2)(~ + 3)

4 Gamma
Gam (r, A)
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