PRIMALITY TESTING OF MERSENNE NUMBERS USING MATHEMATICA

M.I.M. ISHAK

Department of Mathematics, Faculty of Science, University of Peradeniya

Let *n* be a positive integer. Then $M_n = 2^n - 1$ is defined to be the n^{th} Mersenne Number. It is easy to see that if M_n is prime, then *n* is prime. If both *p* and M_p are primes, then M_p is called a *Mersenne prime*. It has been conjectured that there are infinitely many Mersenne primes. In 1644, Mersenne conjectured that M_p is prime for p = 2, 3, 5, 7, 13, 17, 19, 31, 67, 127, 257, and it is composite for all the other integers greater than 1 and less than 257. The complete list of positive integers less than 258 for which M_p is prime was not available until 1940. The complete list is

p = 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, and 127.

The largest one in this list was verified by Lucas in 1876. The test used for this was later simplified by Lehmer in 1940 and is now known as the *Lucas-Lehmer test*. A proof of this is not freely available in the recommended books for undergraduate Number Theory curriculum.

Lucas-Lehmer Test. Let p be a prime. Let (r_k) be the sequence defined by $r_1 = 4$, and for $k \ge 2$, $r_k = r_{k-1}^2 - 2 \pmod{M_p}$, $0 \le r_k < M_p$. Then M_p is prime if and only if $r_{p-1} \equiv 0 \pmod{M_p}$.

In this study, a detailed proof of the Lucas-Lehmer test is given that can be comprehended by undergraduates. Further a computer programme to test the primality of Mersenne numbers written in Mathematica is also included. Using this programme, primality of M_p for $p \le 257$ (Mersenne's range) is tested. The largest M_p tested using this programme is for p = 21701.

Proceedings of the Annual Research Sessions, University of Peradeniya, Sri Lanka. Volume 6, November 16,2001