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Introduction
Numerical computations in solving problems
defined on the sphere suffer from many
difficulties near the poles, known as the 'pole
problems', when using spherical polar
coordinate system for the spherical surface. For
example, in the computation of global weather
prediction models, concentrated grid points
near the poles increase the amount of
computations in the pole region where
quantities of interest are of less important than
the other parts of the globe.

Avoiding pole problems has attracted some
researchers in the recent past (Nasir and
Faham, 2006). Among the recent developments
in this direction, one of the present authors has
constructed weakly orthogonal and orthogonal
spherical harmonics in a non-polar spherical
co-ordinate system based on the 'cubed sphere'
defined from the surface of a unit cube (Nasir,
2007).

Computational efficiency is also one of the
main targets in spherical transforms, which has
been considered for spherical harmonics in
spherical ooler coordinates by some
researchers (MohlenKamp, 1999). In this work
more properties and results for the orthogonai
and weakly orthogonal spherical harmonics on
cubed sphere are established. Computational
efficiency of using weakly orthogonal spherical
harmonics verses its orthogonal counterpart is
analyzed. The Fourier series computations
using the weakly orthogonal spherical
harmonics are considered.

Weakly orthogonal and orthogonal spherical
harmonics
A set of solutions for the eigen-value
problem 6,U(I,,12) = -/(1 + t)u(t"t2), where

(
a' a' a'~,= S, (l+t~)-, +2/,I,--~+(I+/i)-,aI, al,ol, ai,

+ 21~ + 2I. .s: )
, ill, • ai,

and S, = 1+ I,' + Ii , is given by ,",.n) _ pj",n) ,
Y, -}.

I

m+n=l-I.l, where pt··) are polynomials in II

and Iz satisfying the differential equation
, o'p o'p 2 a'p

(I + I, )-~, +21,',--+(\ +1,)--,aI, aI, aI, aI,

- (/-1)(21,se., 2/, ~-I p) = 0a I, a I,

and are explicitly given by the non-zero real or
imaginary parts of
f,i:,(cm-p+n-Q)I2)( I )/i/~i("p-qJ, i=.r:J
,_N, q_, (m-p)/2 p,Q

with m.. = m mod2, ~ = n mod2 and the
subscript 2 in the summation indicates that the
index variables increases with step 2.

A set of continuous spherical harmonics can be
constructed from the eigen-functions for one
face forming a six-tuple of functions
Y(l'·'l)~( y(11.',}Y('f,. ~',.).

>{ ~:' .~ ).Y(lv '2 ~{;f,*).Y(~.7f") )
(1)

where, each component is an eigen-function.
The spherical harmonics ~(",.n) are weakly
orthogonal in the sense that they are orthogonal
for distinct /, but are not orthogonal among the
21+ I functions for a mode I.

Following the method of Kwon et a/., (2001)
with some modifications, a set of completely
orthogonal spherical harmonics can be
constructed from the eigen solutions in the
form

(k) QI(.~)
Z'.r (11,12) = ---u-, k = 0,1

S/2
I
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with Qr~) = p!k)(tI)P'-'(tI)q,_r(l;J..),

where q,_,(/;J..) and p~k) satisfy the differential

equations
d' d(I + ).,)-q -(2/-1)).~ + (/-r)(I + r)q; 0 and
d)" d)'

2 d2p dp
(1+1)--2(r-1)1 -+r(r-l)p;O

I dl: I dt,

respectively and p(ll) ; (I + II')" and
J.. = 12 / p(I,) . The polynomials p;k) are given

by the real and imaginary parts of (I, + i)" and

the polynomials q,_,(/;J..) are given by

where the coefficients a?;r) satisfy

a('-r)= -[(n + I)(n+ 2)/(I-r - n)(1+ r - n)]au-r),I,n l,n+2

with n = 1- r - 2,1- r - 4, ... ,r
l
and r,=(/-r) mod

2.
We normalize the polynomials such that the

leading coefficient is a"-" = ( I ).
I,I-r 1_ r

The orthogonal spherical harmonics are then
given by the six-tuple formed by Z/~\/1.t2) as

in (1).

We define the column vector PI of size 21+1 of
the polynomials ~(m.n) for mode I and the

column vector of polynomials QI
corresponding to the orthogonal spherical
harmonics as follows:
P, =[Ff.oll,If2.1-2),···,IfH,M;

IfIJ-4), If3J-]) , .. " IfHff,.H,);

IfOJ-4), IfU-3>, .•• , 1f'-2ff,.I-I,);

If'.!-2), If3.J-4), ... , 1f'-'-V')t
and
Q = [~.~,~.i,.",~~;

~.~"~~""'~;'''';
~.:>'Q.~,...,~~~;
~~,~~,.··,~~f

where II = 1mod 2.

Each column vector of polynomials has four
sets of components such that the first two sets
correspond to the polynomials of degree I,
while the second two sets correspond to the
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polynomials of degree 1-1. The order of the
column vectors is chosen so that their relations
have a simple structure.

The column vectors of the weakly orthogonal
and orthogonal spherical harmonics are then
given respectively by

Y, = ~~2 ' Z, = ~:, .
S, Sf

Linear relations:

We find that the relationship between the two
set of polynomials is given by

Q(O) = .L~(_I)/~~ 2"( 1- n )~(/-".") and
I.' 2/~':; (/-r-n)/2 I

l/~ I~-" (I Y,Q(I)=_L<_I)l"2"_r_ -n ('-1-".")

I.' 2'-' "_', I-n (/-r-n)/2 '

where Q,'"l, k = 0, I are orthogonal polynomials

of degree I and 1-1 respectively. In matrix form,
we can write Q, = T,P, and hence for the

spherical harmonics
Z,= 1;Y, (2)

Linear relations among functions in the Six
faces
Since each function in the six-tuple are eigen-
functions of the Laplace-Beltrami eigen-value
problem, each term is linearly related by
functions defined on one face. To find these
relations, we first derived the relation between
y}m.n)(tI,f2) and yfm.n)(l111' 1211,),

>f"'''')('!',!.l.) where
IJ IJ

- " (fm-mJ .•.n-q)ll)ll..",r ....qj ,M'_,-q,tO t I
- .~, 1 (m-"'1)12 I (,. 1).

m + n = I -I, I. Relations for the functions in
the six-tuple can then be obtained in view of
the symmetric properties. The components of
the six-tuple are then can be calculated.

Inner product
The norms of the orthogonal system of
spherical harmonics are given by

2 2'r+l (11)' {n r > 0 (3)"z(k)11 --- . ,
" I.r - 2/+1 (I-r)I(I+r)! 2n, r=O

Fourier series
The Fourier series of a spherical functionj{tl;
(2) is written in terms of the weakly orthogonal
spherical harmonics as
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f( 1,,/
2
) = f.A, y,

I'"

where A, is a row vector of size 21 + I of
coefficients given by AI = (I. Y/)(Y" Y,r' ' where

(Y
"
Ylr' = r;T(Z"ZIr'r; by the use of(2).

We note that the vector of coefficients A, is
easily computable since the inner product
matrix involving Z, is diagonal and hence its
inverse is obtained directa by the reciprocals
of the inner products of z,.L in (3).

Computational efficiency
Computations of the Fourier series
representation of spherical functions involve
truncation of the Fourier series to a fmite series
and computing it at discrete points. Computing
the Fourier coefficients «vr= is also done
by quadrature rules that require evaluation of
the spherical harmonics at discrete points.
Here, we see that computing weakly
orthogonal spherical harmonics for a direct
computation of discrete spherical harmonics
requires less than 3 percent of total
computational and storage cost.

Conclusions
We have established the linear relation between
weakly orthogonal and orthogonal spherical
harmonics. Hence, it is concluded that use of

weakly orthogonal spherical harmonics is
computationally cheaper than using its
orthogonal counterpart. We also derived the
linear relations between the eigen-functions in
the six-tuple. Finally, norm of the spherical
harmonics is found.
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