Cey. Room.

PHOTOCATALYTIC NITROGEN FIXATION ON METAL DOPED TITANIA AND OTHER OXIDES

A Thesis presented by

CHANDANI TIKIRI KUMARI THAMINIMULLA

in partial fulfillment of the requirement

for the award of

MASTER OF PHILOSOPHY

in the

UNIVERSITY OF PERADENIYA

SRI LANKA

PERMANENT REFERENCE

FOR USE IN THE

LIBRARY ONLY

434615/

Institute of Fundamental Studies

Physical & Chemical Sciences Group

OCTOBER 1991

ABSTRACT

This study was undertaken for the development of semiconductor based catalysts for photochemical dinitrogen reduction. In a semiconductor, different parts of the surface form the anode and cathode. Electron-hole pairs are created on the particle which react separately on the surface and the different parts of the catalyst particle acts like microelectrodes. Therefore N₂ reduction ability of several catalytic systems was studied and the physical characterization of the catalysts was carried out.

Metal doped (M=Ce,V) TiO_2 powder catalysts were found to convert N_2 to NH_3 upon irradiation with a 400w medium pressure Hg Arc lamp (250-700nm). The effects of dopants such as Cerium/ Vanadium, their relative amounts, calcination temperature, duration of heating of the catalyst and pH affect the NH_3 yield.

An aqueous suspension of coprecipitated hydrous oxides of Eu(III) and Sm(III) is found to photocatalyse the reduction of N_2 to NH_3 . The activity of the complex catalyst, $Sm_2O_3.nH_2O/Fe_2O_3.nH_2O$ is higher than that of pure hydrous Ferric oxide. Sm_2O_3 also catalyses the N_2 photoreduction. The enhanced activity of this composite system is attributed to the separation of oxidation and reduction sites and chemisorption of N_2 on the reduction sites.

When composite catalyst of MoO₃/TiO₂ was irradiated with UV-Visible light TiO₂ reduces MoO₃.H₂O to MoO_{2.5}.(OH)_{0.5}. Measurement of the band position of MoO₃.H₂O suggests that electron transfer from TiO₂ to MoO₃ is responsible for this reaction. The

reduced form of the Molybdenum component converts N_2 to ammonia thermally in aqueous suspensions. MoO_3/TiO_2 system gave better ammonia yield through a cyclic pathway. Irradiation over longer periods results in bronze formation and loss of catalytic activity.

A composite catalyst where Fe_2O_3 crystallites are deposited on ZnO particles was found to photogenerate NO_2 in N_2 purged aqueous solution. Upon irradiation with UV-Visible light hydrogen is evolved concomitantly. The activity of the catalyst is attributed to the hole transfer from ZnO to Fe_2O_3 and preferential chemisorption of N_2 at the Fe_2O_3 surface.